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The problem of stabilized plane capillary-gravitational waves of finite ampli- 

tude at the surface of a stream of perfect incompressible fluid flowing over an 
undulating bed and subjected to pressure periodically distributed along the sur- 

face and defined by some infinite trigonometric series is considered. The inter- 
section of the bed with a vertical plane is assumed to be a periodic curve, 
called the bed line, defined by some infinite trigonometric series. 

The problem is rigorously formulated and reduced to the solution of a system 
of nonlinear integral and transcendental equations. The solution is constructed 
in the form of series in powers of a small dimensionless parameter to which 
amplitudes of the first harmonics of the bed line and of the surface pressure 

wave are proportional. An approximate equation is derived for the wave pro- 
file. 

The particular case is considered, when the length of the bed line wave arc 

is equal to the length of the stabilized free wave line corresponding to the 

specified flow velocity over a horizontal flat bed and constant pressure along 
the surface. In such case the parameter of the integral equation is equal to 
one of the eigenvalues of the kernel of that equation and the solution is con- 

structed in the form of series in powers of the cube root of the small parame- 
ter mentioned above. 

A similar problem but for constant pressure along the surface was considered 
by the author in [l, 21 and in his paper presented at the 13-th International 
Congress on Theoretical and Applied Mechanics (Moscow, 1972 [ 31). 

Another similar problem of capillary-gravitational waves over an undulating 
bed was considered in [4], where besides the topological proof of the existence 
and uniqueness of solution the algorithm for constructing the latter is given, 

but the calculation of approximations is only outlined and the mechanical 
meaning of solution is not investigated in depth. 

Unlike in [4] the equation of the bed line and the expression for pressure at 
the surface are specified here in a form which makes it possible to express any 
approximations in the form of finite sums, and an analysis of the fundamental 
system of nonlinear integral and transcendental equations by the Liapunov- 
Schmidt analytical methods and their developments is presented. 

1. Statement of problem and derivation of fundrmentrl oqur- 
tionc. Let us consider the stabilized plane-parallel motion of a perfect incompres- 
sible heavy fluid bounded from above by a free surface subjected to pressure p0 = 

PO’ $ pa (Z), where pO’ = const and p 0 (L) is a specified periodic function of the 
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horizontal coordinate .I’. The fluid is bounded from below by an undulating bed whose 
intersection with the vertical plane of flow is defined by a certain specified periodic 

doubly differentiable curve L called the bed line. It is assumed that the wavelike line 

L is symmetric with respect to verticals passing through its crests and the middle of 

troughs. Let us assume that the specified mean horizontal velocity c of flow is constant 

for y = 0 (see below) and is directed from left to right. 
Owing to the periodicity of pressure specified at the stream surface and of the bed line, 

the free surface is a stationary periodic wave in coordinates attached to the wave pro- 
gressing at velocity c. Such waves are produced by undulations of the bed and pressure 

distribution along the fluid surface. If the bed is a horizontal plane and the pressure 
constant, these waves disappear and the flow is a uniform stream. Waves generated by 

an undulating bed at varying as well as at constant pressure at the surface will be called 
induced waves [2] as opposed to free waves which exist in the case of a horizontal flat 

bed and constant pressure at the surface at certain specific flow velocities. 
Let the crest of a wave of curve L lie on some vertical line, and let the unknown 

wave and the curve representing pressure p. (x) be symmetric about this vertical and 
the vertical drawn through the middle of the trough of line L. We superpose the y-axis 
of the rectangular coordinate system zy on the axis of symmetry of the crest and direct 
it vertically upward. We locate the coordinate origin 0 at the point of intersection of 

the y-axis with line L and direct the Z-axis from left to right along the tangent to the 
bed line. Let the period (or the wave length) of line L be A. Along the length of the 
wave between two crests there is at least one trough (in the general case there may be 

several crests and troughs along this length). It is assumed that line L has horizontal 

tangents at points x = 0 and x = f I/&. We define the angle between a tangent 
to line L and the z-axis in the form of function @ (s) , where s is the length of wave 

arc measured from zero. The positive direction of a tangent is that which corresponds 
to increasing length of arc s. We denote by 21 the length of arc of line L correspon- 

ding to the period along x, i.e. for 0 < x < A. At x = - If2 h and x = ‘I& the 
lengths of arcs are, respectively, s = - l and s = 1. Since O(s) is a continuous 
function of S, which changes its sign at the crest tops and at the middle of troughs, 

O(0) = O(1) = 6(- 1) = 0 (1.1) 

By virtue of the specified condition of symmetry we have 

@(-Z-j-s)==-@(Z-s) (1.2) 

Assuming that the slope of line L is small, in accordance with the condition of period- 

icity and conditions (1.1) and (1.2), we specify function 0 (s) in the form of the fol- 

lowing trigonometric series : 00 

(1.3) 

where e is a small positive dimensionless parameter, pn are specified real numbers, 

and the series i 0, . 1s convergent within a circle of radius e0 > 0. Using func- 
n=1 

tion 0 (s) , we can write the equation for the bed line as 
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s 

5 = s cos 0 (s) as, I/=( sin O(s) ds 

0 0 
(1.4) 

which implies that h - the length of the wave of line L - is defined by formula 

h=i cos 0 (s) as (1.5) 
0 

It follows from (1.3) and (1.5) that A is the following known function of E: 

a0 = 21, a1 = 0, at= -F, as= 0. (1.6) 
n=1 

where h, (n = 4, 5, . . .) are polynomials in Pi. It is assumed that the length of 
the unknown stabilized wave of the flow over an undulating bed and the period of the 
specified function p,, (x) are equal A. We take the flow plane xy as the plane of the 
complex variable z = x + iy. Let cp be the velocity potential, 4 the stream func- 
tion, LL’ = ‘p _F ilc, the complex potential of velocities, and U and V projections 
of the velocity vector q on the coordinate axes. We then have 

dw/dz = - U + iv, u = - &p/ax, v = - acppy 

To derive fundamental equations of this problem from boundary conditions we confor- 

mally map the region occupied by one wave, which is represented by a vertical rectan- 

gle bounded from above and below by wavelike curves, into the rectangle 

0 < cp < (Pot o<+<+o 

in plane wlwhere ‘II, = q. is the flow discharge rate per unit of time, cp = 0 and 

9 = 90 for x = 0 and x = A), respectively), and then map this rectangle onto the 

interior of a circular ring whose center is at the zero of plane ‘U = ui f iu,. The 
last transformation is given by formula 

w=-$lu (1.7) 

The segment 0 < cp < cpo which corresponds to the free surface now becomes the cir- 
cumference of the external circle of unit radius, and the segment which corresponds to 
the bed becomes the circumference of the inner circle of radius r. = exp (- &c$~ / 

(co) smaller than unity. The ring is slit along segment (ro, 1). The solution is derived 
on the assumption that q. / q. and, consequently, also r, are specified and independent 

of E (see (1.3)). The image of this ring of plane u inthe region 
plane z is determined by the relationship 

dz h p(u) 
-=-- 
du Zni 7’ w(u) = 0 + iz 

Setting ‘p. = ch, by virtue of (1.7) and (1.8) we obtain 

dwldz = - ce’-i0 

of a single wave of 

(1.8) 

This implies that throughout the stream function CD is equal to the angle between the 
velocity vector q and the x -axis, and that 

Q = I q I = ce+ 
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Since function o (u) is holomorphic, it is represented inside the considered ring of 
plane u by a Laurent expansion. It can be shown that owing to the symmetry of the 

wave, bed line and pressure p. (x) , the coefficients of that series must be real. For u = 
ete (0 is the angle between the radius vector and the u,-axis) from (1.8) we obtain a 

differential relationship which, after separation of real and imaginary parts and integra- 
tion, yields for the wave profile the parametric (I. 80) 

e 

5 = - -&- e-i(*)cos O(q) dq, 
s 

” zj = - & e 
I 

-r!Q sina (7) djl (1.9) 
0 0 

In determining y we assume that the coordinate origin is transferred to the top of the 
wave crest ; and in (1.9) 

z (4 = IJ (1, $7 @ (77) = @ (1, 4 

It follows from (1.9) that for solving the problem it is necessary to determine in addi- 
tion to CD (6) also ‘t (0). Owing to the symmetry of the unknown wave about the ver- 
tical passing through the crest, function ‘t (6) is even and function Q, (0) is odd. Hence 
they can be represented by the following trigonometric series : 

- T (0) = A0 + 5 A, COS~p0, CD (6) = 5 B, sin n0 (1.10) 
n=1 n=1 

It is shown in the theory of analytic functions that along the external circumference the 

relationships 2X 

-z(e)--A,= 
s 
’ Ul$) $+_liS N(q, f3)Td, (1.11) 

0 0 

-7% ?a 

vn’ = n r0 - r? 
qL+ rOn 9 vn* = n (r-in - Ton), 

4 1 
- = - - & 
V*a 

73 
vz 

~(e)=~Ko($,e)~d~+2~M(~,8)~d$ 
0 0 

Ko(%e)=+ 5 sin nl sin n0 y* ’ 
7%=l n 

M(q,e) = f i cos~es*inne 

Tl==l * 

V v - If 
‘0” + ran 

n- _-l l  
n , v,**= n(ron +7-J, yn’v,” = n2 

r0 - To 

where T* (f3) = ‘t (r,,, f3) and CD* (0) = @ (ro, 0) which follow from Villat’s equa- 
tions for the ring. Owing to the symmetry of the bed line, expansions (1.10) are valid 
for these functions but with other A,, and B, (n = 1, 2, 3, . . .). Passing to the bound- 
ary condition at the surface, we use for it the Bernoulli integral 

p I p = c - gy - llzq9 (1.12) 

where c is a constant, g is the acceleration of gravity, and p is the density. The 
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pressure difference at the free surface is balanced by the normal component of surface 
tension forces. In accordance with the law of Laplace for these forces we have 

P-PP~=++IR (1.13) 

where p is the pressure from the fluid side, p,, = po’ -j- p. (x) is the pressure from 
the side of the free surface, p is the capillary constant,and R is the radius of curva- 

ture at points of the surface. From this, by expressing the curvature in terms of d@/dO, 
we obtain 2nu d@ 

P-Po==hcq~ (1.14) 

Substituting the expression for p from (1.14) into (1.12), we have 

2n 
- eT - h xyeef (1.15) 

?Sp 

v=4ny, 
6 = 2 (CP - pn’) E!h 

p@ ’ x = T ( (1.16) 

where x and Y are determined by formulas (1.9) as functions of 0 . Separating in the 
right-hand side of (1.15) terms linear with respect to Q and 7, we obtain 

II 
dcI, 

-=vIg_1-((6+l)r+xS~(ll)dll- 
d0 

(1.17) 

S (0) (1 - z) + F [z, Q’, 8, N} 

F [r, @‘, S, 81 = 6 (em’ - i f ?) - (e’ - 1 - Z) f 

lceT ’ [eer(n) sin 0 (q) - CD(q)] dq - s 
0 

0 0 

x s (D(q) dq]+ xeeT s 0 (q) dq - S (0) (e-’ - 1 + T) 
0 0 

We assume here that within the accuracy of the constant included in PO’ 

p; (x) z 5 Cd,, cos 2;n -x = s(e) 
n=1 

(1.18) 

where a is the same small parameter which appears in (1.3), d, are specified real 

numbers, and the expansion Iend, is convergent in a circle of radius e. > 0 (see 
(1.3)). To determine S (0) we must substitute into (1.18) the values of z / h obtained 
from equation e 

+_ 1 * -- 
2n s 

e-rt*) cos @ (q) dq (1.19) 
0 

which follows from (1.9). The expression for y is taken into account in (1.17). 
Let us determine more accurately the parameters in Eq. (1.17). It follows from 

(1.6) and (1.10) that o. 

y z y(O) + 2 @G&n, y(O) zzz cZpho 
-G$-’ 

(1.20) 
n=i 
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where the expression omitted in the second braces is the same as in the first ones. Terms 
linear with respect to z, @ and E in braces in (1.21) are transformed by using formulas 
(1.U) and integration by parts. After this we combine in the first braces terms (with 
coefficients 2 and - x,) with the same integrand &I? / dq and different kernels 
K (q? 0) and Ks(q, 8) from (1.23). Since velocity c is specified, hence parameters 
v(@) and 3~~ are fixed, and 6 is determined by the cotrdition of perk-&city : @ (6 + 
23~) = CD (0). Since the right-hand side of Eq, (1.21) contains parameter E, hence 
the solution and, frequently also 8 depend on E. Let ns set 

6 = 60 + 6’ (8) (1.22) 

For E -+ 0 from the condition of perk&city we find that 6, = 1 since the solution 
and 6’ (E) then tend to vanish. 

After all these tra~formations with allowance for (1.22), Eq. (1.21) assumes its final 
form (dots in the second braces stand for the last six terms appearing in th6 first braces) 

where v,are eigenvatues and q,n (0) eigenfunctions of kernel K* (I, (3). The eondi- 
tions of periodicity for function @ (@) yields the expression 
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(1.24) 

2x 

d'(E) = - x0 
s ~2(%w(7wl- (2 + 6'(E))Ao- 
0 

& 2f Y ((3, E) de -4 {[ ,z& n=l 
vWP 8’ (e) + (2 + 6’ (E)) A0 + 

0 

x0 7 
0 

K,(%0)5(11)42~ + 1 Y(e,e)de} 

Let us consider boundary condition at the bed for r = ~0. The flow must evidently 

follow the contour of the bed. Because of (1.3) the condition for this is of the form 

(1.25) 

To obtain this condition in its final form it is necessary to determine function S (0). 
We recall that for r = r. 

Hence 

& = - _& e-%* (Q+i@* (0) de 

ds = ) dz ] = - & CT* (0) de (1.26) 

The minus sign in this formula shows that positive increments of arc s correspond to 

decrements of 8. From (1.26) we have 
l-l 

(1.27) 

We select coefficient A o (a) so as to have the length of the bed line arc, which corre- 
sponds to a period, equal to the specified value of 21. In accordance with (1.27) this 
condition is determined by formula --2a 

215~& [ e-5”(“) (L7q 

0 
or 

2x 

2je-Ao(~l zzz h 
2ll 

e-s*(-n)-Ao ($1 dq (1.28) 
0 

and by virtue of (1.10) for r* and @* the exponent - z*(-t$ -A,(e) does not con- 

tain A0 (E). 
Note that another equation may be derived for defining the equality of bed line and 

surface wave lengths of the fluid. Using the relationship between Y,*~ and Y,‘~ it would 
be possible to show that this condition which follows from (1.23) is equivalent to (1.28). 

It follows from (1.28) that the expansion of s (8) in powers of & has a single secular 
term. hence m 

(1.29) 

Differentiating (1.25) with respect to 8 and allowing for (1.27). we represent the bound- 
ary condition at the bed in the form 

5*(e) = _ de(s) h e-T* (0) 
ds 2n 

(1.30) 
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Using expansion (1.29) it would be possible to obtain (1.30) in the form given in [Z]. 
Function ‘G* (Cl) on Eqs. (1.27). (1.28) and (1.30) is determined by formula 

2n 

-z*(e)-- 4) = - 
s 

K(q, (3) y,+2'5 N(q&$dq (1.31) 
0 i, 

which is derived similarly to the first of formulas (1.11). 
The problem is thus reduced to the determination of functions 

5 (0, E) = da / de, C* (0, E) = d@* / de, 5 (0, E) I A, s (0, e) 

and consfants 6 = i -I- 6’(e) and A, (E) bv the svstem of Eqs. (1.~9),(1.23)~(~.24), 
(1.27). (1.28) and (1.30), with t (6, a) and r* (0, E) determined by (1.11) and (1.31) 
and 

0(8, e) = Sj(91, E) do, @*(e, 6) = i5*(~, ~1dt-1 (1.32) 

0 0 

Eliminating with the use of formulas (1. ll), (1.19). (1.27). (1.28) and (1.31) from this 

system z (O), z* (O), I (0)/A, s (0) and A, (a) and representing Q (3, E) and CD* (9, E) in 
the form (1.32), we find that (1.23) and (1.30) are nonlinear integral equations with 
respect to 5 (6, a) and 5* (9, E), and (1.24) is a transcendental equation with respect to 
6’ (E) with functionals relative to the unknown functions. For the convenience of solu- 

tion it is, however, expedient not to carry out this elimination and consider only the in- 

tegral equation (1.23) as nonlinear with respect to 5 (8, e), while considering the re- 
maining equations, including (1.23) as nonlinear transcendental equations with respect 

to functions 6* (9, E), z (0, &j/h and s (0, a) and constants 6’ (a) and A, (E) with linear 
operators and functionals relative to the unknown functions. 

In solving this problem we have to consider two cases: (1) ~(0) # Y, and (2) ~(0) = 

vn* 
In the first case the solution is constructed in the form of series expansions in integral 

powers of parameter E , and in the second in $‘a. In both cases Fredholm linear integ- 
ral equations of the second kind with kernel K* (II, 8) and parameter v(O) are obtained 
for the coefficients of expansion 5 (0, a) . For the coefficients of expansions of remain- 

ing unknowns, a system of linear algebraic equations which are always solvable, is ob- 
tained. Equations for the first coefficients of these expansions for y(O) = v, and ~(0) # 

v, are analyzed in Sect. 2, 
We note the mechanical meaning of the limit solution for E --f 0. We can show, as 

in [ 21, that at the limit the flow becomes a uniform stream over a horizontal bed with 
a horizontal free surface. 

2. Solution of the linear problem, 2.1. Solution of the linear 
problem for ~(0) =Y, and analysis of the kernel of Eq. (1.23).The 
solutions of Eqs. (1.23) and (1.24) in the form of series in &‘a are 

2x 

SlP) = @)[2f K"(q,@51(q)d'l + 6% + 2AOl + x0 jK2(%wl(rl) dll] (2.1) 

0 0 
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We obtain the same system if we assume that c* (0) G 0 and S (0) G 0 in (I, 23) 
and (1.24). as in the case of a free wave over a flat bed, and restrict the analysis to 
linear terms. 

Eliminating 6, from (2.2) and (2.1) and discarding the subscript, we obtain 

i; (0) = ~(0) T K* (q, e) 5 (~1 CE~ c-3) 
0 

This equation is a Fredholm homogeneous linear equation of the second kind, hence by 

the second Fredholm theorem it has a nonzero solution for ~(0) = Y,; where v, is the 

eigenvalue of kernel R* (q, 6). On the other band, by virtue of (1.16) parameter 
Y@J) > 0 and in accordance with (1.23) Y, depends on n and x,,, with the latter con- 
sidered fixed. We must, therefore, investigate the dependence of Y, on n for fixed XO. 
A detailed investigation of this dependence is given in [S] . 

Let US now consider n as fixed and investigate the relationship between ~(0) and X0 
for which a nonzero solution of Eq. (2.3) exists. Setting @of = Y,, from (1.23) we 
obtain 

1 -4(2v,,“-x0) 
&ot (2.4) 

Substituting into this equation the expressions for v(o) and xc from (1.16) we obtain the 

known dependence between c2 and h, 

FormuIas (2.4) and (2.5) were also analyzed in detail in f6], 
Here we present only some of the results of the analysis of the linear problem solution. 

Theorem 2.1. Let 1 - =I? 
v(O) & (%Ln - %J 

where n is a fixed positive integer. Then for all x0 in the interval 0 ( x0 ( 2~~” 

Eq. (2,3) has the nontrivial solution 

If 

where m is a positive integer, then 

are particular solutions 1inearIy independent of (P~ (6) and the general solution is 

5 (e) = Cpp,, (0) + C2~,n (0) = -+$ cos no + $$ cos mtl 

The value 3~0 = r+,fm) is called bif~~tional, and waves corresponding to that value 
and determined by the solution in the form of a sum of two harmonics are called double- 

waves. The eigenvalue Y, _I_ v, related to 3~0 = %J(~) is binary. 
Theorem 2.2. Curve c2 = c2 (&,) representing Eq. (2.5) has a vertical asymptote 

h, = 0 and a horizontal one cs = gjZ. The value c2mia which corresponds to h0 = 
ho*, where ho* is the positive root ot some transcendental equation. We call the related 
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x0 = x0* critical and from (1.16) we have for it the expression 

x0* - gho* -- 
2 

3tcmin 

The branch of curve c2 = c2 (ho) which corresponds to 0 < A0 < A,* or 0 ( x0 < 

XO* defines waves called capillary-gravitational, while waves which occur for A,, > 
h,*or x0* < x0 < 2vnn are called gravitational-capillary. 

2.2. Solution of the linear problem in the case of v@)#v,,. 
To analyze in a linear approximation the possible forms of the free surface in depend- 
ence on the wave propagation velocity we assume that the bed line is specified by 

00 

Then 

(2.6) 

G* (0, E) = &* (0) = - E 2 pi cos it3 (2.7) 
i=l 

As the result of solving the related linear nonhomogeneous integral equation for $0) # 
v, we obtain for function 5 (0, E) the following expression: 

Integrating (2.7) and (2.8), we obtain 

0” (0, 8) = - E z] -f sin ie 
i=l 

CD@, e) = &V(O) 5 yi 

*=1 1 (Y. -Y(O)) : rt ) 
- di sin ie 

2 

(2.8) 

(2.9) 

(2.10) 

It can be shown that 
Vi - V(O) > 0 for C < Ci 

Vi-do)<0 for C>Cj 

(2.11) 

where Ci denotes the wave velocity determined by formula (2.5) for i = n. The con- 

dition that 
cz > & th (23Wo / cpo) (2.12) 

which follows from the positiveness of Y, is taken into consideration in the proof. Since 

v(O) > 0 and vi > 0, the signs of coefficients in formula (2.10) are determined by 
the signs of 

.$JG($-ai) 

Let (4jjjlVi* - di) > 0 and pi’> 0 , then it follows from (2.11) that the coefficients 
at related terms in (2.9) and (2.10) hve different signs for c ( Ci and the same signs 
for C > Ci* The analysis of formulas (2.9) and (2.10) with the use of inequality (2.11) 
leads to the following conclusions. 

Let the inequality cs,,_r <C < C2n be satisfied for velocity c . Then for c close 
to c~,,_~ the principal term of expansion (2.10) has a minus sign. If, however, c is 
close to cZn, the sign of the principal term in that equation is positive. In the first case 
crests and troughs of the free surface lie over the crests and troughs of the bed line. In 
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the second case the troughs of surface waves lie over the crests of the bed line and the 
crests of the former lie over the troughs of the latter. The relative position of crests 
and troughs of the bed line and of the surface wave profile in the next following inter- 

val cZn -Cc C Gn+i is similar. It was assumed in this analysis that all pi > 0 and 

that the first term in formula (2.9) is the principal term of the expansion which defines 
the shape of the bed line. 

Analysis of the solution of the linear problem for ~(0) =#= v,, and the bed line speci- 

fled in the form of series (1.3) is given in Sect. 4 and Note 4.3 (see also p. 380 in Cl]>. 

8. Solution of fu~~Amant81 squrtfonl of tha problem, Aswas 
already noted at the end of Sect. 1, it is necessary to consider the two cases of Y(O) # 

v, and ~(0) =vn when solving the system of Eqs. (I, 19),(1.23), (1,241, (1.27 ),(1,28) 
and (1.30). We shall indicate the method of solution derivation in both cases. in the 
first case we present the results of determination of the first three approximations. In 
the second case a detailed analysis of ~(0) = v1 is given as an example. Parameter 3c0 

is selected so as to have the eigenvalue of v1 simple and positive. The first two appro- 

ximations are completely calculated, while the third approximation is not entirely deter- 

mined. For y(O) t- y, = Y, (n # m) we present only the method of constructing 
the solution, 

3.1, The case of ~(*f# Y,. As previously noted, the solution in this case is 
constructed in terms of expansions in integral powers of E. For every coefficient of ex- 

pansion of function 1; (0, ef a linear nonhomogeneous Fredholm integral equation of 

the second kind with kernel K* (11, (I) and parameter v(a) is obtained. All these equa- 

tions are successively solved by the first Fredholm theory,and for the determination of 
the coefficients of expansions of remaining ~nowns we obtain a system of linear alge- 
braic equations. In this always solvable system the coefficients of a particular approxi- 
mation are explicitly expressed in terms of quantities determined in preceding approxi- 

mations. 
The expressions for {* (0, e), 5 (8, e), 6’ (a) and Aa (e),determined by the first 

three appro~mations are 

c* (e, &) = - Eljl eos 8 - r2Dzr& cos 26 - es (a,scose + Dsa co.5 38) (3.1) 

5 (8, E) = 8 C,l cos 8 f- &Vs, cos 28 -j- es (CIS cos 8 + C,, cm 30) 

6’ (E) = - E xaG,, - ~~(%oCza -i- 2Ao, -!- llrx,WL) i- E% 

A0 (r) = s2A02 = - $ s2 $ i- + Cl,) - P12] 
where 

C 
v@) Vi 

11 = 
VI -v(O) 

pg-4) 

(3.2) 
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Here C,s * is a linear function of Clls, C112f31, CI&“, CIICYD Czzfht #h3, Cnflzt 
~$s, Cl&, C&&, Cl12dl, dLC,,, pldz, fi12dl; Lfr3 &es not explicitly depend on 
4 and ds and is a linear function of the same products of coefficients Clf, Cz2, & 
and ps, as Crs*, except Cl13; C,,* is a linear function of the same arguments as C,s* 
and, in addition, of (3s and d,; D33 does not explicitly depend on 4, ds and da and is 
a linear function of 8s and of the same products of coefficients C,,, Cs2, &, & as 

Cs3*, except Cl13; 6,” is a linear Gnctionof C13, Css, Cl13, Cl12@,, @12C1,, C11E112, 
G&22, E&22. 

3.2. The case of $0) =Y~, In this case, when the solution is derived in the 
form of series in a% for the first coefficient of expansion 5 (0, E) we obtain a homo- 
geneous linear integral Fredholm equation of the second kind with ~(0) = vl, which is 
solved by the second Fredholm theorem. Equations for all subsequent coefficients are 

the same but nonhomogeneo~ for the same parameter ~(0) = v,.These equations are 
sohed by the third Fredholm theorem. The coefficient in the nth ap~oximation of the 
solution of the homogeneous equation is determined by the condition of solvability of 

the equation in the (n -j- 2)- nd approximation, 
Each of the coefficients CI1, C,, and C,, are successively determined by the rela- 

ted condition of solvability of the equation in the third, fourth and fifth approximations. 

Coefficient C,, was not calculated, because the fifth appro~mation was not determined. 
The coefficients of expansions of remaining unknowns are determined as in the case of 
V(O) # Y,. 

The expressions for 5 (8, a), c* (6, E), 6*’ (8) and Ao (E), determined by the first 
three approximations are 

c* @,a) = - E& COS8 (3.3) 

5 @,a) = a’/% C11 coa 0 + cai* css cos 26 + E (Cr, cos 8 + es, cos 30) 

(3.4) 

cz== 
32v1’3 (Ya - Yl) 

(Q - vd is (3 - 2YP) + 12xoYl’ (1 - VP)] + sx$viy$v~’ 
C 

22 
_-- _ 3 ~IWQl 

T Vl’ (v‘z - Yl) CtIs, (733 = 
WV3 

p c33* 213 - VI 

where Cs3* is a linear function of Cl13 and CiiCss; 8,’ is a linear function of C,,, 

Cs3, Cl13 and CiiCss, and coefficient C,, = 0. 

We recall that in both cases r (0, a) and t* (0, E) are determined by (I. 11) and(l.31), 
and d, (0, e}and @* (0, E) by (1.32). 

3.3. The case of v(o) = y, = v, (n =j= m). In this case the solution is derived 
similarly to the Case of ~(0) = v, , but the solution of the homogeneous integral equa- 
tion contains the sum Ci, ~0s n$ + Ci, cos m6 inevery i th approximation. In the 
general case coefficients Ci, and Ci, are determined by the condition of solvability 
of the equation in the (i + 2)-nd approximation. 
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4. Detetminrtion of the wave profile, The wave profile is determined 
in the parametric form r (0, E) and y (0, E) by formulas (1.9). We pass to dimension- 
less coordinates z / h and y / h without altering the notation and, after substituting 
the obtained 0 (0,~) and ‘G (8, r) , we obtain the parametric equations for the profile. 
Eliminating from these equations 8, we reduce the equation for the profile to the form 

Y = Y (2, 8). 
Assuming 2n = k- , me equation of rhe wave profile approximate to within third 

order terms in both cases are : 
In the case of $0) # y, 

Y (x7 E) = -+ (F&l ( cos kx - 1) + $ E2 (($2 - E&l) (cos 2kx- 1) + (4.1) 

$ ~~ 6C13 -j- & (3~1” 
[ 

- 4) C,13 - 6 * c,, Cl, -& + 
Vl v1* ( 211 v1* ) 

; CllE112 - ; C,,E,, + 3C22E11-j (cos kx - 1) + ; tx3 1; C,, - 
L 

& cn3 + $ Cl, En2 - ; CII E,z - C,,E,,] (cos 3kx - 1) 

where coefficients C’ij and Eij are defined by formulas (3.2). 

In the case of Y(O) = Ye the expression for y (5, E) is obtained from (4.1) by sub- 
stituting in it &II3 for E ,, and in the expressions for E,, , ii,, and 033 setting B1= 

p2 = 0 and d, = d, = 0. In this case coefficients Cij are determined by formulas 

(3.4). 
Note 4.1 When determining u (5,. e) we transfer the coordinate origin of the 

point of intersection of the Oy-axis with the wave profile. Hence, assuming that v1 < 

y(~)( v,,and analyzing the principal term of (4.1). we conclude that, depending on the 
sign of Cl1 ) either a crest or a trough of the surface wave may be present over the crest 

of the bed line. It follows from (3.2) that this sign is determined by the relationship bet- 
ween coefficients fil and d,. 

Note 4.2. If Y(O) = Y, corresponds to the eigenvalue of the kernel of the integral 
equation, we have the particular case mentioned at the beginning of this paper. In fact, 
for v(O) = vVz from formulas (1.16) and (1.23) we obtain expression (2.5) which in this 
particular case links in a linear approximation c and h, . 

Note 4. 3. When v(O) # v1 and the bed line is specified in the form of series(l.3). 
the analysis of the solution of the linear problem is similar to that presented in Sect. 2, 
2.2 with n = I. To allow for subsequent harmonics it is necessary to add to the first 
harmonic in the first term of series (1.3) the sum of n harmonics of the i th order (i = 

2, 3, . . .) n). 
If one considers that the solution of the linear problem is determined by the principal 

term of the complete solution, the result of investigations described in Sect. 2, 2.2 may 
be also applied to the solution of the nonlinear problem. 

6. Existence rnd uniquene8r of solution of the problem, With 
the use of the Liapunov-Schmidt methods and their developments v] we establish the 
following theorems. 

Theorem 5.1. For ~(0) + v, the system of Eqs. (1.19),(1.23),(1.24),(1.27), 
(1.28) and (1.30) has a unique small with respect to E , and continuous with respect to 

8 (0 f 8 < an) solution 5* (e, E), 5 (e, E), 5 (e, ~1 1 A, s 64 9, A0 (4, 
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6’ (a) (6’ (e) = 6 (e) - I), and f or small 1 -E 1 < EO this solution is an analytic 

function of a. 

Theorem 5.2. For v(O) = vl, where v1 is a simple positive eigenvalue, the sys- 

tem of Eqs. (1.19),(1.23),(1.24),(1.27),(1.28) and (1.30) has a unique,small with res- 
pect to e ,and continuous with respect to 8 (0 & 8 < 2n) solution c* (0, a), 5 (0, 

a), 2 (0, e) / h, s (0, E), A, (E), 6’ (E), and this solution can be represented in the 

form of series in e% convergent for small 1 E 1 <eo. 
The proof of these theorems is similar to that given in 18, 91. 

These theorems imply the absolute and uniform convergence of series for @ (0, e), 

r(e, e), m*(e,&) and ‘t* (0, a). The convergence of series in powers of E and in E% 
(for v(O) = vl) of integrands in (1.9) follows from general theorems of the analysis of 

substitution of series into series. The convergence of series whose approximate sums are 

defined by formulas (4.1) and (4.2) is established on the basis of such general theorems. 
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